29 research outputs found

    Introducing heterogeneous users and vehicles into models and algorithms for the dial-a-ride problem

    Get PDF
    AbstractDial-a-ride problems deal with the transportation of people between pickup and delivery locations. Given the fact that people are subject to transportation, constraints related to quality of service are usually present, such as time windows and maximum user ride time limits. In many real world applications, different types of users exist. In the field of patient and disabled people transportation, up to four different transportation modes can be distinguished. In this article we consider staff seats, patient seats, stretchers and wheelchair places. Furthermore, most companies involved in the transportation of the disabled or ill dispose of different types of vehicles. We introduce both aspects into state-of-the-art formulations and branch-and-cut algorithms for the standard dial-a-ride problem. Also a recent metaheuristic method is adapted to this new problem. In addition, a further service quality related issue is analyzed: vehicle waiting time with passengers aboard. Instances with up to 40 requests are solved to optimality. High quality solutions are obtained with the heuristic method

    Enhancing Branch-and-Bound for Multi-Objective 0-1 Programming

    Full text link
    In the bi-objective branch-and-bound literature, a key ingredient is objective branching, i.e. to create smaller and disjoint sub-problems in the objective space, obtained from the partial dominance of the lower bound set by the upper bound set. When considering three or more objective functions, however, applying objective branching becomes more complex, and its benefit has so far been unclear. In this paper, we investigate several ingredients which allow to better exploit objective branching in a multi-objective setting. We extend the idea of probing to multiple objectives, enhance it in several ways, and show that when coupled with objective branching, it results in significant speed-ups in terms of CPU times. We also investigate cut generation based on the objective branching constraints. Besides, we generalize the best-bound idea for node selection to multiple objectives and we show that the proposed rules outperform the, in the multi-objective literature, commonly employed depth-first and breadth-first strategies. We also analyze problem specific branching rules. We test the proposed ideas on available benchmark instances for three problem classes with three and four objectives, namely the capacitated facility location problem, the uncapacitated facility location problem, and the knapsack problem. Our enhanced multi-objective branch-and-bound algorithm outperforms the best existing branch-and-bound based approach and is the first to obtain competitive and even slightly better results than a state-of-the-art objective space search method on a subset of the problem classes

    Modeling and solving a vehicle-sharing problem

    Full text link
    Motivated by the change in mobility patterns, we present a new modeling approach for the vehicle-sharing problem. We aim at assigning vehicles to user-trips so as to maximize savings compared to other modes of transport. We base our formulations on the minimum-cost and the multi-commodity flow problem. These formulations make the problem applicable in daily operations. In the analysis we discuss an optimal composition of a shared fleet, restricted sets of modes of transport, and variations of the objective function

    Bi-objective facility location in the presence of uncertainty

    Full text link
    Multiple and usually conflicting objectives subject to data uncertainty are main features in many real-world problems. Consequently, in practice, decision-makers need to understand the trade-off between the objectives, considering different levels of uncertainty in order to choose a suitable solution. In this paper, we consider a two-stage bi-objective single source capacitated model as a base formulation for designing a last-mile network in disaster relief where one of the objectives is subject to demand uncertainty. We analyze scenario-based two-stage risk-neutral stochastic programming, adaptive (two-stage) robust optimization, and a two-stage risk-averse stochastic approach using conditional value-at-risk (CVaR). To cope with the bi-objective nature of the problem, we embed these concepts into two criterion space search frameworks, the ϵ\epsilon-constraint method and the balanced box method, to determine the Pareto frontier. Additionally, a matheuristic technique is developed to obtain high-quality approximations of the Pareto frontier for large-size instances. In an extensive computational experiment, we evaluate and compare the performance of the applied approaches based on real-world data from a Thies drought case, Senegal

    An outer approximation algorithm for multi-objective mixed-integer linear and non-linear programming

    Full text link
    In this paper, we present the first outer approximation algorithm for multi-objective mixed-integer linear programming problems with any number of objectives. The algorithm also works for certain classes of non-linear programming problems. It produces the non-dominated extreme points as well as the facets of the convex hull of these points. The algorithm relies on an oracle which solves single-objective weighted-sum problems and we show that the required number of oracle calls is polynomial in the number of facets of the convex hull of the non-dominated extreme points in the case of multiobjective mixed-integer programming (MOMILP). Thus, for MOMILP problems for which the weighted-sum problem is solvable in polynomial time, the facets can be computed with incremental-polynomial delay. From a practical perspective, the algorithm starts from a valid lower bound set for the non-dominated extreme points and iteratively improves it. Therefore it can be used in multi-objective branch-and-bound algorithms and still provide a valid bound set at any stage, even if interrupted before converging. Moreover, the oracle produces Pareto optimal solutions, which makes the algorithm also attractive from the primal side in a multi-objective branch-and-bound context. Finally, the oracle can also be called with any relaxation of the primal problem, and the obtained points and facets still provide a valid lower bound set. A computational study on a set of benchmark instances from the literature and new non-linear multi-objective instances is provided.Comment: 21 page

    Modeling and solving the multimodal car- and ride-sharing problem

    Full text link
    We introduce the multimodal car- and ride-sharing problem (MMCRP), in which a pool of cars is used to cover a set of ride requests, while uncovered requests are assigned to other modes of transport (MOT). A car's route consists of one or more trips. Each trip must have a specific but non-predetermined driver, start in a depot and finish in a (possibly different) depot. Ride-sharing between users is allowed, even when two rides do not have the same origin and/or destination. A user has always the option of using other modes of transport according to an individual list of preferences. The problem can be formulated as a vehicle scheduling problem. In order to solve the problem, an auxiliary graph is constructed in which each trip starting and ending in a depot, and covering possible ride-shares, is modeled as an edge in a time-space graph. We propose a two-layer decomposition algorithm based on column generation, where the master problem ensures that each request can only be covered at most once, and the pricing problem generates new promising routes by solving a kind of shortest path problem in a time-space network. Computational experiments based on realistic instances are reported. The benchmark instances are based on demographic, spatial, and economic data of Vienna, Austria. We solve large instances with the column generation based approach to near optimality in reasonable time, and we further investigate various exact and heuristic pricing schemes

    Data for a meta-analysis of the adaptive layer in adaptive large neighborhood search.

    Get PDF
    Meta-analysis, a systematic statistical examination that combines the results of several independent studies, has the potential of obtaining problem- and implementation-independent knowledge and understanding of metaheuristic algorithms, but has not yet been applied in the domain of operations research. To illustrate the procedure, we carried out a meta-analysis of the adaptive layer in adaptive large neighborhood search (ALNS). Although ALNS has been widely used to solve a broad range of problems, it has not yet been established whether or not adaptiveness actually contributes to the performance of an ALNS algorithm. A total of 134 studies were identified through Google Scholar or personal e-mail correspondence with researchers in the domain, 63 of which fit a set of predefined eligibility criteria. The results for 25 different implementations of ALNS solving a variety of problems were collected and analyzed using a random effects model. This dataset contains a detailed comparison of ALNS with the non-adaptive variant per study and per instance, together with the meta-analysis summary results. The data enable to replicate the analysis, to evaluate the algorithms using other metrics, to revisit the importance of ALNS adaptive layer if results from more studies become available, or to simply consult the ready-to-use formulas in the summary file to carry out a meta-analysis of any research question. The individual studies, the meta-analysis and its results are described and interpreted in detail in Renata Turkeš, Kenneth Sörensen, Lars Magnus Hvattum, Meta-analysis of Metaheuristics: Quantifying the Effect of Adaptiveness in Adaptive Large Neighborhood Search, in the European Journal of Operational Research
    corecore